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Device Failures
• Material defects are a root cause of device failures

– These defects and corresponding secondary effects are 
exacerbated by additional energy from:

• High Electric Fields
• Large Current Densities
• Increasing Temperature
• Interface stress of material layers

• Non-micropipe defects in the bulk and epitaxial layers of 
SiC have been reported to limit the current and voltage 
ratings in devices and have contributed to degraded 
performance and failure. [1]



Si Power Device Reliability 
Benchmarks
• IGBT Modules are around 10’s to a few FIT (10-9 failures per 

device operation hour)
– Gate drivers now have a higher FIT than IGBT device
– IGBT Package and device-related failures account for about 

35% of the faults in motor drive circuits

• IGCT operation in rail inverter applications has indicated > 45 
years MTBF and an associated 6 FIT



Key Improvement Question

• Can FIT meet or exceed Si parts to take advantage of projected 
3-fold increase in power density (SiC) ?

– This improved power density typically means higher 
operating temperatures, greater thermal cycling, higher 
impressed electric fields, etc.  - ALL IN OPPOSTION TO 
IMPROVED RELIABILITY



Defects in WBG Material
• SiC

– Micropipes nearly eliminated (< 2.5 per cm2)
– Threading Screw Dislocation (TSD) density is around 

1000 per cm2

– Basal Plane Dislocation (BPD) density is a few to 10’s 
per cm2

– Threading Edge Dislocation (TED) density is 100’s to 
1000’s per cm2

– Result is a derating of voltage or current density 
by a factor of 2 or more

• GaN
– Bulk defect densities can exceed 106 per cm2



Substrate screw dislocation propagates 
into epi-layer depending on the epitaxial 
growth method. 
One dislocation will:
- Reduce VBD by 5-35%;
- Soften the breakdown;
- Highly localized current may 
concentrate in the dislocation resulting in 
microplasmas.

Threading Screw Dislocation

The defects may also result in reduction of charge carrier lifetime.
Currently, the density is 1000 - 3000 cm-2

Reference [2]

Reference [3]



Basal plane dislocations  (BPDs) 

BPDs are one of the troublesome defects in 
SiC material. 
Stacking faults originate from the BPD 
causing:

- increase in VF under constant 
current for bipolar SiC devices; 

-increase of reverse-biased leakage;
- decrease in forward-biased current 

in unipolar devices. 

The main source of BPDs in epitaxial layer is from propagation of 
BPDs present in the substrate. 
Currently,  the density is below 10 cm-2 due to improvements in 
bulk and epitaxial growth.

Reference [4]



Threading edge dislocations (TEDs)

Usually one dimensional defects on 
the wafer surface. 

They occur by insertion or removal of 
an extra half plane of atoms between 
two lattice atomic planes. 

Currently,  the density several 103 cm-2. 
Diodes with higher TEDs densities  have higher leakage current
and slightly lower breakdown voltage compare to those without 
dislocations.

Reference [5]



pin Diodes in SiC suffering from basal plane 
dislocation glide and stacking fault creation during 
the on-state. [1, 6]

• Over current during on-state causes an increase in the 
recombination energy being absorbed to create and further 
extend existing material defects.  These increased defects lead 
to more charge carrier recombination, thus delivering more 
energy to the crystal and increasing the effective forward 
voltage drop (increasing the power dissipated in the device).
– Specifically, Basal Plane Dislocations (BPD) expand into triangular 

shaped stacking faults [7]
The 4o to 8o off-orientation 
of crystallographic c-axis 
for epitaxial layer can 
cause BPD growth inclined 
to surface originating from 
epi-layer and substrate 
interface with a growing 
stacking fault.



SiC Power BJT
• Interface states near the emitter act as 

recombination sites and affect the current gain.
• Stacking faults 

grow from the 
surface and degrade
the current gain by 
up to 50% after a 
few hours of operation.
– This can be mitigated by proper processing 

of surface passivation layers [7].



•Failure of Schottky
Diodes reported as dv/dt stress causing 
breakdown due to excess charge generation in space charge region 
under reverse bias in an area with dislocation defects.   [8]
•JBS diode structures have been shown to handle surge current 
densities at least twice as high as for Schottky diodes. [9,10]

Schottky and Junction Barrier Schottky
(JBS) Diodes in SiC



However, operation of JBS 
diodes has shown increased 
forward voltage over time 
due to stacking faults 
increasing charge carrier 
recombination and impeding 
charge flow just as in other 
SiC bipolar devices. [7]

Infineon’s 2nd generation Schottky diodes are 
reported to have a failure rate of less than 0.15 ppm.

However, Cree’s SiC JBS diodes have achieved a 
failure rate of less than 0.5 failures per billion 
operational hours (0.5 FIT). [11]

JBS Diodes in SiC – Problem or Not?



SiC MOS-devices



Oxide Growth on SiC

• Annealing at high temperatures 
after p-body and n+-source region 
implants results in the need for 
oxide growth afterward.

• Oxide grows in an area with high 
nitrogen doping (area 1).

• Oxide growth over epi-layer is 
grown with few defects 
(area 2).

• Oxide grows in an area with high 
aluminum doping 
(area 3).

Electric field stress is determined by oxide thickness and gate voltage; choices 
limited due to targets for threshold voltage and transconductance.  Due to 
permittivity differences between SiO2 and SiC, the electric field strength in the 
oxide is typically 3 times higher than in the SiC. Control of the parameter d 
(pitch in p-body) modifies the field.



• Various intrinsic defects not related to dopants or impurities 
are observed at the SiC/SiO2 interface. 
• SiC has a higher surface density of atoms per unit area 
compare to Si, resulting in a higher density of dangling Si- and 
C-bonds and carbon cluster at the interface. 
• Defects located in the near-interfacial oxide layer may appear 
in the energy gap of SiC and act as traps for electrons.
• Low channel mobility in 4H-SiC is directly linked to very high 
interface state densities in the SiO2/SiC interface. 
• Interface state densities reduction plays a critical role in 
increasing of channel mobility and improving the high 
temperature performance, as well as the reliability of power SiC
MOSFETs. 

SiC - Dielectric Interface State Density



Dielectric Improvements

• Reduction of the interface state density and improve the 
device reliability by nitric oxide post-oxidation annealing.
– This reduces carbon clusters at the interface thus increasing 

the channel mobility and the dielectric quality.
– One promising solution is carefully formed an oxide-nitride-oxide 

(ONO) dielectric on 4H-SiC [7, 12]

•Cree has shown with Time Dependent Dielectric 
Breakdown (TDDB) measurements that the breakdown 
field in the oxide is 10 MV/cm and a corresponding 
MTTF over 109 years. [13]
•Cree has demonstrated threshold voltage shifts of about 1 
V under High Temperature Gate Bias (HTGB) tests.



Problems with Al for Operation 
above 200 oC [12]

1. Interlayer dielectric erosion
2. Al spearing to poly-Si gate
3. Ni2Si contact disappearance
4. Electrode delamination



Interlayer dielectric erosion (IDE)

Al electrodes erode and penetrate the 
underlying interlayer dielectric and finally 
reach the poly-Si gate, resulting in the 
gate-source short-circuit. 
Failure occurs within only 2 hours of 
storage time at 500 oC.
The erosion progression depends on the 
temperature and the quality of the silicate 
glass. 



To prevent IDE: 
-Use Si (1 wt%) - doped Al which 
effectively reduces the dissolution 
and movement;
- Use of a barrier metal (BM) 
preventing the movement of Al into 
the underlying material (50 nm of Ta 
and 150 nm of TaN;
- Deposition of a barrier dielectric 
(BD) over the silicate glass interlayer 
dielectric.

Before

After



Al spears (or spikes) are seen in the gate
located between the Al-interconnect and the
gate after 2 hours of storage at 500 oC.
Caused by massive movement of Al of the
gate interconnect into the poly-Si gate.
Al spears extend to the channel region along
the poly-Si gate and reduce the gate oxide,
causing a dielectric breakdown failure and
finally a gate-to-source short circuit.

Al spearing in poly-Si



Ni2Si-based ohmic contacts degrade in 
connection with the Al interconnect, such as the 
contacts on the n+ source region. 
Contact disconnection is observed after  32 
hours at 500 oC. Al starts to react with Ni2Si,
decomposing it and forming NiAl3 and Si. 

Ni2Si contact degradation 



To prevent the Al spikes in poly-Si gate a combination of 1 wt%
Si-doped Al interconnect and Ta/TaN barrier metal can be used.

Mitigation of Al spearing and Ni2Si 
contact disappearance



Ni2Si contacts have low resistance and are used 
as ohmic contacts on n-type 4H-SiC. 
A common technique for fabricating Ni2Si 
contacts is to deposit a thin Ni film followed by 
rapid-thermal annealing at 950 -1050 oC.
Surface segregation of carbon due to the 
annealing causes the upper metallization layer 
to delaminate. 
To avoid: remove surface segregated carbon 
before the metallization process.  However, 
delamination can still occur probably due to 
movement of carbon back to the surface over 
time.  Further processing with H2 sintering 
followed by O2 treatment.  

Electrode delamination



SiC JFET

3.5 kV - Vertical JFET Ron = 30 mΩ-cm2

[19];

4 kV- Vertical JFET Ron = 45 mΩ-cm2 [20];

5.3 kV Static Expansion Channel JFET-
Normally-off

Ron = 69 mΩ-cm2 [21];

11.1 kV - Normally-off TI-VJFET Ron = 124
mΩ-cm2 [22];;

4.5 kV - Cascode based on SiC VJFET Ron =
1.2 Ω [23].



SiC IGBT

10-kV P-IGBT on SiC was 
reported in 2005 [24];

12 kV P- IGBT Ron = 14 
mΩ-cm2 [25];

13 kV N- IGBT Ron = 22 
mΩ-cm2 [26];

12 kV, 10 A  N-IGBT
[34]



SiC Thyristors

First SiC symmetrical thyristors 700 V, at 6 A  VF = 
3.9 V [27];

1.77 kV, at 100 A and 200 oC VF = 4 V [28];

2.6 and 3.1 kV  at 12 A VF = 6.5 V [29];

7 kV at 300 A/cm2 and 25 oC VF = 3.66 V; 
at 300 A/cm2 and  224 oC VF = 3.1 V, [30];

4.5-kV P-type GTO 4.6 V at 25 A/cm2 turn-off 
energy loss 9.88 mJ [31];

7.8 kV Graded etched junction termination 
extension thyristors VF = 3.9 V at 100 A/cm2 Ron = 
5.3 mΩ-cm2 [32];

12.7 kV SiC commutated GTO VF = 6.6 V, 
leakage current less than 1 x 10-3 A/cm2 at 9 kV and 
at 250 oC, at 100 A/cm2 [33];



GaN



GaN Diodes
• GaN pn-junction diode with silicon 

nitride (SiNx) passivation and 
aluminum field-plate (FP) structure 
(1.1 kV breakdown). [14]



GaN Transistors
• Lateral HEMT (HFET or MODFET)

– Channel formed at AlGaN/GaN 
interface.

– Due to bandgap differences, 2D 
electron gas formed which 
promotes high conductivity 
electron flow.

• Vertical  Structures
– Lateral or Vertical 

Gate Designs



GaN Transistors – Some Issues
• Need normally-off devices.

• Lattice mismatch between AlN buffer layer, GaN, and substrate 
material (Si, SiC, or sapphire) introduces defects.
– GaN substrates becoming available

• Current degradation (collapse) due to electron trap sites from 
surface defects and dislocations.  
– SiN passivation has been used to help mitigate. [15]

• Lateral structures are field limited.  Incorporating field plates 
improves breakdown capability.



Trends in Lateral Devices

• GaN HEMT with field 
plate and Metal-
Insulator-
Semiconductor (MIS) 
gate. [15]
– Reduces electric 

field at gate edge

• Proposed normally-off 
structures [16]



Vertical Transistors

Lateral and Vertical Gate structures. 
[17]

Current Aperture Vertical Electron Transistor (CAVET)
with Mg doped current blocking layer reaching 

5000 A/cm2. [18]



Carbon (Diamond)



Diamond applications
Mechanical Thermal

Optical Electrical



Approach: Laser-induced multi-energy 
processing

10.591 μm

CH2-wagging mode: 10.534 µm
CO2 laser: 10.532 µm



Enhancement of diamond film 
crystal growth

5 mm

Irradiated by tuned CO2 laser 
(10.532 µm, 800 W) 

No laser irradiation

5 mm



SEM Raman XRD



Excitation at different laser powers

0           25        50          75   100  
Counts

No laser 25 W 50 W 100 W 150 W

200 W 300 W 400 W 600 W 800 W

5 mm



Deposition of diamond films

SEM images of diamond films deposited for 1 hour 
with laser excitation at (a) 0, (b) 25 , (c) 50 , (d) 100, 

(e) 150 , (f) 200,  (g) 300, (h) 400, (i) 600, and (j) 800 W.



Raman spectra
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Growth pits

. 

Known as surface depreciations 
exhibiting two morphology types:
- stripe-shaped; 
- sharp-apex growth pits. 

Resulting from threading screw and edge dislocations in 4H-SiC 
epitaxial layers.

Field enhancement may occur around the growth pints resulting in 
non-ideal characteristics for Schottky barrier heights of 
SiC devices.

Currently, the density is 1-100 cm-2.

Reference [59]



Micropipes
The most prominent defect in SiC;
The quantity determines the wafer quality.
Micropipes are super screw dislocations, 
showing as holes through a wafer. 
They penetrate through the entire crystal 
along the c-axis and have size ~ 1 μm.

Reasons for forming:
Thermoelastic stress due to non-uniform heating; 
Kinetic causes related to the nucleation process and growth surface 
morphology;
Technological causes depended on seed surface preparation and 
the growth system contamination. 

Reference [53]



Low angle boundaries (LABs)

Critical defects preventing the 
implementation of large-size power SiC 
devices. 

The LABs are not uniformly distributed 
and are due to non-optimized process 
condition. 

The crystal periphery tends to form the growth of large diameter 
crystal. 
The center region of a crystal generally has a better crystal quality with 
a lower density of LABs. 
Currently, 100 mm SiC substrates are produced   without LABs.

Reference [55]



Triangular defects (TDs)
TDs  are isosceles triangles with varying 
apex angle. 

TDs contain an inclusion of the 3C 
polytype.

Two theory of TDs origin: 
- TDs occur at substrate locations containing lattice imperfection, 
polishing-induced damage, or contamination; 
- Formed during the step flow growth of the epitaxy. Temperature non-
uniformities during epitaxial growth cause the appearance of triangle 
insulation of different polytypes. 
TDs cause leakage current increasing and lowering of breakdown 
voltage.
TDs are common defects in 4H-SiC with density 1-10 cm2.

Reference [60]



Carrot defect (CD)
CD  is one of the major surface 
morphological defects appearing during 
growing of epilayers.  
CDs has different shapes and structures. 
CD structure consists of two stacking   
faults one in the prismatic plane and other 
in the basal plane connected through a star-
rod dislocation. 

Two models for CD origin : 
Threading screw dislocations in the substrate;
Presence of foreign particle inclusion at the epi-substrate interface.
CDs - increase the leakage in pn junction, and the  non-smooth surface 
will impact Schottky rectifying properties.
The CDs density is smaller than 5 cm-2. 
CD will not be presented in 1 cm2 power devices in a few years. 

Reference [60]



F-N tunneling current - is a process in which electrons tunnel
through a barrier due to a high electric field.

The phenomenon is a major concern for the reliability.

Fowler -Nordheim (F-N) tunneling current
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q - electron charge;

SiCm and oxm - effective electron mass in the SiC and SiO2

 - reduced Planck constant

oxE - electric field in the oxide

b - effective barrier height



( )b FE T  

 - electron affinity between SiC and SiO2

FE - Fermi level. 

SiC devices have  higher F-N current injection compare to Si 
devices due to smaller barrier height. 
This is a serious limitation of SiC power MOS-based devices and 
should be consider during design.

ox ox S S E E For the same SiO2 layer thickness,  the electrical 
field in the SiC should be lower than the value 
used for Si. Therefore, the electrical field of the 
SiC material will be limited. Si SiC 

Replacing SiO2 with a dielectric with bigger dielectric constant will 
not improve the reliability, because a  material with higher dielectric 
constant will have smaller conduction band offset with SIC and 
therefore high FN tunneling current.



Schottky metal-based devices
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A**  - modified Richardson constant;
A - area of the device;
T       - operating temperature; 

B
VT - thermal voltage.

- metal-semiconductor barrier height;



Cree, Inc.
Schottky diodes 600 and 1700 V
MOSFET 1200 V
Infineon
Schottky barrier diodes
1200 V as discrete;
1700 V in modules.
SemiSouth
1200 and 1700 V SiC JFETs



Reliability of bipolar semiconductor devices

Bipolar devices (PIN diode, BJT, IGBT and thyristor) have a low VF due 
to conductivity modulation in the lightly doped drift region, but the 
switching losses are too high. 

For the same blocking voltage, SiC devices are made thinner and with 
higher doping concentrations of the drift region. 
Storage charge is smaller and the switching losses will decrease. 
Excess carrier concentration of SiC device are higher compare to Si one.
This will decrease the voltage drop in the lightly doped drift region. 
niSiC is approximately 1020 smaller compare to niSi
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VF >3 V and PON are high.

Limited to 150 A/cm2, so easy dissipate heat.


